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ABSTRACT 

In this paper we examine several second-order accurate schemes for the solution of one- 
dimensional flows containing discontinuities. 

Two problems of shock interactions have been considered, and two generalizations 
of these schemes have been used for the solution of the Navier-Stokes equations. 

I. INTRODUCTION 

In this paper we examine a series of one-dimensional flows containing discon- 
tinuities. Unlike characteristic methods the discontinuities are not considered 
to be internal moving boundaries. The description of the motion of the discon- 
tinuity is obtained from the solution of the differential equations. Hence the 
methods used to integrate the differential equations yield weak solutions (solutions 
which need not be differentiable) in the space-time domain. Several second-order 
accurate schemes are tested and compared. These second-order methods are 
characterized by small truncation error and confinement of the shock transition 
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to a narrow region of two or three mesh points. First-order schemes may require 
several times the number of mesh points to describe the same transition. 

Two problems of shock interactions have been considered. They include the 
overtaking of one shock wave by another and the head-on collision of two shock 
waves. 

Finally, two generalizations of these schemes have been examined and used 
for the solution of the Navier-Stokes equations. 

II. DIFFERENTIAL EQUATIONS 

The equations of hydrodynamics may be written in vector form: 

wt =fx 
where w is a vector function of x and t 

and f is a given nonlinear vector function of w, i.e., 

(1) 

(2) 

(3) 

The mass p, momentum m, and total energy E are all per unit volume. The total 
energy is written as the sum of the kinetic energy m2/2p and the internal energy pe. 

E = m2/2p + pe 

and the pressure is given by the equation of state, 

p = P(Y - l>e = (Y - 1W - m2/2p), 

where y is the ratio of specific heats. 
(4) 

III. DIFFERENCE EQUATIONS 

The class of methods to be discussed are defined on the half plane t > 0, 
-cc < x < co, where {x+~ = fn Ax, ti = idt; n, i = 0, 1, 2 ,... } define the uni- 
formly spaced net points of the lattice. We call writ = w(nAx, t) the mesh function 
which is defined on this lattice and which constitutes an approximation to the 
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solution of the differential equation (1). We will consider difference approximations 
of the form 

where 6,) 6, are suitable difference operators which approximate the partial 
derivative operators of Eq. (1). In the discussion that follows, the form of 6, 
and 6, for several difference schemes will be given. 

The Lax-Wendroff scheme is based on the Taylor series expansion of the vector 
function W(X, I + At) so as to include the second-order term wtt . This term is 
expressed in terms of space differences using Eq. (1); i.e., wtt may be written as 
wtt = MJt = La, = (Awt), = w&c 3 where A is the matrix whose determinant 
is the Jacobian off(w) with respect to w. The value of w  at time t + At and point n 
on the mesh may then be given by 

t+At 
W?l 

- (AZ + &-lult -.&)I. (5) 
A two-step method obtained by Richtmyer [l] is referred to as a two-step Lax- 

Wendroff scheme. The values at the intermediate points are computed at a time 
t + At using a first-order scheme, and then a second-order scheme (leap frog) 
is used to compute the value at time t + 24 t. The overall scheme has second order 
accuracy. This paper describes several variations of Richtmyer’s two-step method 
for two independent variables. For three independent variables, the reader is 
referred to one of the author’s recent paper [2]. It is possible to write Richtmyer’s 
scheme so as to require only one-half the mesh spacing 

WL+AtIZ = wl+1 +, + writ 
n+* 2 + & L&+1 -f,“l (6a) 

If, instead of computing the intermediate values at time t + @t/2), we compute 
them at t + At and then average the f differences at t and t + At so that both 
the w  and f values are centered at point (n, t + dt/2), the following difference 
approximation is obtained: 

W)+At = 
n+t -f,“l 

fnt+l d-1 +ft+"" _ 
2 n+* 

It should be noted that the linearized forms of systems (6) and (7) reduce to the 
Lax-Wendroff scheme, Eq. (5). We shall discuss this point later in the paper. 
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IV. NUMERICAL RESULTS TO SEVERAL TEST PROBLEMS 

A comparison of the three methods was made by examining them at different 
values of X = dt/dx. For h = .48 CFL, i.e., 0.48 of the Courant-Friedrichs-Lewy 
stability condition, X < l/j u 1 + a, the results for all three schemes were essentially 
the same. In Fig. 1, the density vs distance plots are shown for the fiftieth time 
step. The shape of these curves remained unchanged at time step 200. Figure 2 
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FICA 1. Density vs distance at time step 50; At/Ax = .48 CFL. 
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FIG. 2. Density vs distance at time step 50; At/Ax = .79 CFL. 
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shows the results for h = .79 CFL and again they did not change with further 
integrations in time. The overshoot behind the shock for system (7) is seen to be 
smaller than it was for the previous value of h and, in fact, the oscillation decreases 
as the stability limit is approached. It is apparent that the difference approximation 
given by Eq. (7) has the greatest damping for this problem since the overshoots 
obtained from the other two schemes are substantially larger. 

All schemes become unstable at X = CFL. Figures 3 and 4 show the results for 

‘1-1 
B I 

FIG. 3. Density vs distance at time step 50; At/Ax = .98 CFL. 

h = .98 CFL for 50 and 100 time steps, respectively. Difference approximation (7) 
is clearly the best and gives virtually no overshoot. The original Lax-Wendroff 
method, Eq. (5), does not improve as you approach the stability limit as opposed 
to system (6) which does. Based on numerical experiments of bore formation in 
the atmosphere [3], the Lax-Wendroff scheme in the shallow water equations also 
exhibits variable damping characteristics with increasing h. 

As an example of an interaction problem, we investigated the case of two equal 
strength shock waves undergoing a head-on collision. The problem is illustrated 
in Fig. 5. The initial conditions are for shocks of Mach number 10, each connecting 
two constant states. The pressure, density, and velocity were assigned the value of 
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FIG. 4. Density vs distance at time step 100; At/Ax = .98 CFL. 
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FIG. 5. Head-on collision of two equal shock waves. 
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unity in the undisturbed state. The shocks connected this states with two states 
labeled 2 and 4. The results (two receding shock waves) for the following initial 
conditions are shown in Fig. 6: 

p4 = 5.7142 p2 = 5.7142 

u4 = 10.7615 us = -8.7615 
pa = 116.5 p2 = 116.5 
y = 1.4 y = 1.4 

FIG. 6. Density vs distance for two colliding shocks; scheme 3; &/Ax = .98 CFL. 

The calculation was carried out using system (7) with h = .98 CFL. The other 
two methods gave similar results with larger density overshoots near the tail of 
the shocks. The theoretical pressure ratio across the shock may be calculated 
from the Rankine-Hugoniot relations which, under suitable algebraic manipulation, 
lead to the following expression: 

ps- 2 + 7 - P1IP.l - 
1 + dPl/P4) ' 

?=y+1. 
P4 Y-1 

The theoretical pressure ratio is 7.51 for y = 1.4; the computed value was 7.69. 
Another interesting problem that was used as a test of these methods was the 

overtaking of one shock wave by another. It is known that for y < Q , the fluid 
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after the interaction will contain a transmitted shock, a reflected rarefactioa wave, 
and a contact surface which connects the two constant states (see von Neumann[4]). 
Plots for density and pressure vs distance are shown in Figs. 7 and 8 and were 
computed using the maximum allowable value of A. 
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FIG. 7. Density vs distance for coalescing shocks. 

14,000------ I A . I I 1 I 
I 

1 

2,000 150 250 350 500 

0 - 120 160 200 240 280 320 ’ 350 400 440 480 520 

DISTANCE 

FIG. 8. Pressure vs distance for coalescing shocks. 
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V. ANALYSIS OF VISCOSITY FOR THE THREE LAX-WENDROFF SCHEMES 

In an effort to account theoretically for the difference in behavior of the three 
schemes, Eqs. (5-7), we examined the stability criteria for each of them. This 
requires a linearization of the equations, i.e., we write them in matrix form: 

W,=AlV z 

Here A is the Jacobian of the transformation and is now to be regarded as constant. 
This linearized partial differential equation is now differenced according to the rules 
specified by Eqs. (5-7). We next consider a solution of the form w,’ = e3(t)eika and 
substitute it into the difference scheme. This leads to the quotient [E(t + dt)]/[C(t)], 
which is the growth factor for the amplitude of the kth harmonic for the time- 
interval At. We call G the amplification matrix for the particular difference scheme 
and for stability, the eigenvalues of G should be, in absolute value, less than or 
equal to one. For ail three cases the amplification matrix becomes 

G = I + iA. sin 5 + X2A2(cos f - l), 

where I is the unit matrix and [ = kdx. Thus the stability criteria is the same for 
all three schemes; the reader is referred to a proof by Lax and Wendroff [5] on 
the stability of difference schemes whose amplification matrix is G. 

The Lax-Wendroe scheme, Eq. (5), may be written correct to third order as 

$ [w(f + At, x) - w(t, 41 

=q(t,x++)-j-(t,x-~) 
AX 

+ [h (t, x + +) -ft (t, x - *)I q 

+ [ha(t,x+$+ht(t,x-+)](~ 

+ [f&t (6 x + q) -fttt (I, x - +jj ($g[. 

Expanding the other two schemes in a similar way and writing: 

it is apparent that to first-order schemes (5-7) are identical. One would expect 
the coefficient of the At term to be a measure of the viscosity, since it is this term 
which, if set equal to zero, with the higher order terms, gives rise to an uncon- 
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ditionally unstable scheme. The coefficient, however, is 4 for all three schemes. 
The coefficients of the (At)2 terms are Q , Q and & respectively and these relative 
magnitudes are maintained for higher powers of At. Thus, the nonlinear behavior 
of the particular difference scheme seems to play a strong role in the characteristic 
damping observed since the coefficient of the (Ot)z term, which may be thought 
of as an additional artificial viscosity, does not have a weight factor which correlates 
with the observed damping. 

VI. NAVIER-STOKES EQUATIONS 

In generalizing these schemes to solve the Navier-Stokes equations we did not 
consider the original Lax-Wendroff method since its generalization is considerably 
more complicated than the other two schemes, and the previous results did not 
seem to warrant it. The two schemes considered are given by systems (9) and (10). 

We write the Navier-Stokes equations as 

where S is given by 

and 

Oij = P axj 
( 

au. 
-+g) + (/Jdt-i/fd)+$6,j. 

wt =fz + s, 

S= ' 

(8) 

Here, k is the thermal conductivity, t.~ the viscosity, and cc’ is the second coefficient 
of viscosity, sometimes called the dilatational viscosity which we take to be zero. 
The equation of state is given by 

p = pRT. 

The equations are nondimensionalized in the usual way; i.e., we introduce 
a length L, velocity U, and density p. . Momentum is nondimensionalized with 
respect to p,U and energy with respect to poU2. The explicit form of the S vector 
is then 

YE 1 I 1 - --- 
Pr p 2 

0 
4 m - _ 

( 1 3Re P zr 

where Re and Pr are the Reynolds and Prandtl numbers, respectively. 

581/2/z-7* 
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We now give the two schemes considered: 

-t+At/Z _ d+l 
wn+* - 

+ w91t 

2 

-t+At/?. _ 
wn - 

d,l -I- d-1 

2 

where the bars signify intermediate values. 

-t+At _ +%+l 
wnOn+t - 

t + writ At 
2 + z rx+1 

-t+At _ 
% - 

d&+1 + d-1 

2 + & [X+1 -&,I + Ats,t. 

The preceding two equations are used for calculating the intermediate values 
for the second scheme. For the final value at point n at time t + At we use 

At % e-At = w,t + 2dx [ 
fnt+l -fnt-1 

2 +x:4” -Ey] + $ [Snt + s:+At]. (10) 

System (9) is unstable; i.e., as the Reynolds number was decreased the densities 
became negative locally. In addition, the shock speed decreased with increasing 
viscosity, whereas it should be independent of viscosity. 

Some results for system (10) are shown in Table I. With decreasing Reynolds 
number oscillations appear behind the shock. However, the dependence of the 
computed shock speed on the Reynolds number was much less than that of 
system (9). 

The second order difference schemes that we have been considering center both 
the time and space differences. If one considers a parabolic equation such as the 
heat equation, U, = au,, , centering both time and space differences at the same 
space-time point results in a difference scheme that is always unstable. However, 
if one takes a forward difference in time and centers the space difference at time t, 
then the difference scheme is stable if oAt/(Ax)2 < Q . 

The Navier-Stokes equations are a mixed hyperbolic parabolic system. Cal- 
culating the S vector at time t, rather than at time t + At/2, represents a centering 
of the dissipation term at time t. To see if such a change really is a stabilizing factor, 
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TABLE I 

SYSTEM (10); DENSITY FOR VARIOUS REYNOLDS NUMB= 

Re = 450 Re = 4 Re = 1 Re = .6 

5.691 5.111 6.016 6.221 
5.688 5.155 5.962 6.048 
5.691 5.153 5.813 5.855 
5.113 5.161 5.810 5.118 
5.155 6.116 5.828 5.931 
5.188 5.812 5.913 6.330 
5.190 5.851 6.233 6.881 
5.183 5.903 6.540 1.454 
5.110 5.964 6.841 7.882 
5.140 6.021 1.064 8.143 
5.122 6.050 1.113 8.381 
5.126 6.016 1.244 8.138 
5.711 6.084 7.303 3.993 
5.671 6.082 5.409 1.108 
5.604 6.044 1.392 1.008 
5.114 4.308 1.009 1.000 
2.911 1.112 1.000 1.000 
1.006 1.001 1.000 1.000 
1.000 1.000 1.000 1.000 
1 .OOo 1.000 1.000 1.ooo 

we examined the eigenvalues of the amplification matrix corresponding to system 
(10) with the final step given as 

At 
% t+At z.z writ + --& x+1 -.tL 

[ 2 + 52:” - fnfy] + Lltsnt. (11) 

We first rewrote the S vector in the following way: 

s= 

Then, in matrix notation Eq. (8) becomes wt = (A + C)w, + Bw,, , where A, B, 
and C are regarded as constant matrices for purposes of the stability investigation. 
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They are given explicitly as follows: 

/z&x-= 
aW 

i 
yEm (,‘” l)m3 
2-- 

P P3 

C = aSjaw, where the elements Ci, are given by 

c,, = c,, = c,, = c22 = c23 = 0, 

.6 
0 UNSTABLE ’ I/ 

0 STABLE 
/ 

.5=% :.“. OF IG,r <I 

/ 

-0 
/ 

/ I 

.5 1.0 1.5 2.0 2.5 3.0 3.5 

FIG. 9. Maximum eigenvalue of Ga vs R.. 
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Note, however, that the elements of matrix C are homogeneous in the first differen- 
tial of the dependent variables. Then for smoothly varying solutions, only the 
elements of A need be considered for the coefficient of w, . The linearized form 
that we consider is 

wt = Aw, + Bw,, . 

We call G1 the amplification matrix for system (10); G, is the amplification 
matrix for scheme (11). It then follows by the usual arguments that 

G1 = Z + h2(cos f - 1)A2 + ~(1 - cos f)B + ~~(4 cos2 [ - 8 cos 5 + 4)B2 

+ i{h sin ()A + XE(sin 5 cos t - sin OAB}, 

and 

G, = Z + h2(cos 5 - 1)A2 + ~E(COS f - 1)B + @(sin ()A + he(sin c cos 4 - sin [)AB}, 

Zis the unit matrix .$ = kdx, and E = At/(d~)~. 
To calculate the complex eigenvalues of the matrices G, and G, we expanded 

the determinants and used Cardan’s solution of the cubic equations. We chose 
the Courant-Friedrichs-Lewy condition for a first estimate. The eigenvalues of G, 
and G, for values of ,$ evenly spaced from zero to rr were computed. If the absolute 
value of the eigenvalues was greater than one, At was reduced and the calculation 
repeated. 

We found, for At > 0, that the absolute values of the eigenvalues of G, were 
always greater than one. However, the value of At for which the magnitude of 
the eigenvalues of G, were less than one is bounded away from zero. All calculations 
reported in this paper were performed with scheme (1 l), which was first used by 
Thommen [6]. 

In Fig. 9, the absolute value of the maximum eigenvalue of G, is plotted as 
a function of Reynolds number. The stability condition of Gary [7] is also plotted 
for comparison. The CFL condition requires At < .348. Several computed runs 
for system (11) were carried out to 400 cycles for two values of the Reynolds 
number. The stable runs are indicated by circles, unstable runs by squares. It is 
seen that stability is assured if it is chosen such that 

At <min 
[ 
$$$-,A,“] 

where At, is that value of Mx which assures the maximum absolute eigenvalue 
of G, is less than unity. 

The actual calculations were performed with initial conditions corresponding 
to a right moving shock travelling at a Mach number of 1.6 with respect to the 
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IJ 

FIG. 10. Velocity distribution for Pr = .75, Re = 4.5, M = 1.6, y  = 1.4. 

FIG. 11. Temperature distribution for Pr = .75, Re = 4.5, M = 1.6, y  = 1.4. 

1.7 

1.6 
. 

1 .5 

14 
1.3 

I I I I I I\l I I 
1.2 

I.1 

1.0 
‘\_ 

9 

--i 4Ax I-- 



DIFFERENCE METHODS FOR A COMPRESSIBLE GAS 193 

undisturbed fluid. The Rankine-Hugoniot relations were used to compute the 
state behind the shock. 

To check the convergence of system (10) with these initial conditions we ran 
three cases each for a real time of 20. h was taken to be successively .2/l, .05/.20, 
and .0125/.125 and the number of integration cycles to be 100, 400, and 1600, 
respectively. 

Corresponding points for the last two runs agreed to within 1% and all sub- 
sequent calculations were performed with A = .05/.20. 

We now proceeded to investigate the change in properties through the shock 
for different Reynolds and Prandtl number. The results are in qualitative agreement 
with the steady state calculations of Morduchow and Libby [8], to whose paper 
the reader is referred for other references on the subject. Since our nondimen- 
sionalization is different from theirs, a quantitative comparison of the results was 
not possible. 

In Figs. 10 and 11 we show the velocity and temperature distributions for 

FIG. 12. Entropy distribution for Pr = co, Re = 4.5, M = 1.6, y = 1.4. 
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a Prandtl number of $ and a Reynolds number of 4.5. The shape of the curves 
remains virtually unchanged for all values of Pr greater than 2 . 

Figure 12 shows the entropy distribution in the absence of heat conduction but 
in the presence of viscosity. The Prandtl number is infinite and the Reynolds 
number is 4.5. The entropy increases monotonically through the shock as a result 
of viscous dissipation in the absence of conduction. 

For finite Prandtl number (Fig. 13) the entropy has a maximum because the 
time rate of heat loss from the fluid due to conduction near the tail of the shock 
exceeds the rate at which heat is gained by viscous dissipation. 

.06 

S-s, 
c, .05 

.04 
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.02 

.Ol 

0 

-I 4Ax t- 
FIG. 13. Entropy distribution for Pr = .75, Re = 4.5, M = 1.6, y  = 1.4. 

The last case considered was that of heat conduction without viscosity (Pr = 0). 
The exact solution for the steady state problem is known; the temperature and 
velocity rise continuously to a maximum value and then remain constant, whereas 
the entropy rises to a maximum value and then decreases discontinuously to a lower 
value; i.e., an isothermal discontinuity occurs. 

Our results for this case are shown in Figs. 14-16. The oscillations behind the 
shock are numerical. 
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FIG. 14. Velocity distribution for J?r = 0, M = 1.6, y  = 1.4. 
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FIG. 15. Temperature distribution for Pr = 0, M = 1.6, y  = 1.4. 
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FIG. 16. Entropy distribution for Pr = 0, M = 1.6, y  = 1.4. 
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